Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Biol Direct ; 18(1): 81, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017487

RESUMO

The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Smad8/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo
2.
J Exp Clin Cancer Res ; 41(1): 352, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539767

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS: We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS: High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION: This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.


Assuntos
Neuroblastoma , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Retroalimentação , Fatores de Transcrição/metabolismo , Neuroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Smad8/genética , Proteína Smad8/metabolismo
3.
J Biol Chem ; 298(12): 102684, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370851

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays pivotal roles in various biological processes during embryogenesis and adult homeostasis. Transmembrane anterior posterior transformation 1 (TAPT1) is an evolutionarily conserved protein involved in murine axial skeletal patterning. Genetic defects in TAPT1 result in complex lethal osteochondrodysplasia. However, the specific cellular activity of TAPT1 is not clear. Herein, we report that TAPT1 inhibits BMP signaling and destabilizes the SMAD1/5 protein by facilitating its interaction with SMURF1 E3 ubiquitin ligase, which leads to SMAD1/5 proteasomal degradation. In addition, we found that the activation of BMP signaling facilitates the redistribution of TAPT1 and promotes its association with SMAD1. TAPT1-deficient murine C2C12 myoblasts or C3H/10T1/2 mesenchymal stem cells exhibit elevated SMAD1/5/9 protein levels, which amplifies BMP activation, in turn leading to a boost in the transdifferentiation or differentiation processing of these distinct TAPT1-deficient cell lines changing into mature osteoblasts. Furthermore, the enhancing effect of TAPT1 deficiency on osteogenic differentiation of C3H/10T1/2 cells was observed in an in vivo ectopic bone formation model. Importantly, a subset of TAPT1 mutations identified in humans with lethal skeletal dysplasia exhibited gain-of-function activity on SMAD1 protein levels. Thus, this finding elucidates the role of TAPT1 in the regulation of SMAD1/5 protein stability for controlling BMP signaling.


Assuntos
Transdução de Sinais , Proteína Smad1 , Proteína Smad5 , Animais , Humanos , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Membrana , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Estabilidade Proteica , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886863

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor ß (TGFß) signaling. In this report, we investigated the major transducers of TGFß signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Proteína Smad8 , Animais , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445177

RESUMO

Adipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia. The latter, also known as adipogenesis, is a process by which multipotent precursors differentiate to form mature adipocytes. This process is directed by developmental cues that include members of the TGF-ß family. Our goal here was to elucidate, using the 3T3-L1 adipogenesis model, how TGF-ß family growth factors and inhibitors regulate adipocyte development. We show that ligands of the Activin and TGF-ß families, several ligand traps, and the SMAD1/5/8 signaling inhibitor LDN-193189 profoundly suppressed 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands engaged the same mechanism of action involving the simultaneous activation of SMAD2/3 and inhibition of SMAD1/5/8 signaling. This effect was rescued by the SMAD2/3 signaling inhibitor SB-431542. By contrast, although LDN-193189 also suppressed SMAD1/5/8 signaling and adipogenesis, its effect could not be rescued by SB-431542. Collectively, these findings reveal the fundamental role of SMAD1/5/8 for 3T3-L1 adipogenesis, and potentially identify a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 inhibition in adipogenic precursors.


Assuntos
Adipogenia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Células 3T3-L1 , Animais , Camundongos , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
6.
Dev Biol ; 478: 183-204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216573

RESUMO

The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d â€‹+ â€‹12 â€‹h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Poliquetos/embriologia , Poliquetos/metabolismo , Proteínas de Peixe-Zebra/farmacologia , Animais , Padronização Corporal/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/genética , Encéfalo/embriologia , Sistema Digestório/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Olho/embriologia , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Poliquetos/efeitos dos fármacos , Poliquetos/crescimento & desenvolvimento , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
7.
Bull Exp Biol Med ; 171(3): 305-311, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34302205

RESUMO

We studied the effects and mechanisms of action of conophylline in different concentrations in the original in vitro model of myocardial fibrosis (treatment of cardiac fibroblasts isolated form the hearts of newborn rats with angiotensin II). Viability, collagen content, and expression of related protein in cardiac fibroblasts were assessed using the MTT-test, Sircol assay, and Western blotting, respectively. Conophylline markedly protected the cultured cells against the development of angiotensin II-induced fibrosis, which was seen from reduced viability of fibroblasts, decreased collagen content, and down-regulation of the expression of α-smooth muscle actin (α-SMA). Conophylline did not affect the TGF-ß pathway altered by angiotensin II, but markedly decreased the level of bone morphogenetic protein-4 (BMP4) enhanced by angiotensin II and BMP4 itself. Conophylline produced no effect on phosphorylation of α-SMA and Smad homologue-1/5/8, the classic BMP4 downstream pathway elements, but reduced the level of c-Jun N-terminal kinase (JNK) elevated by BMP4. Conophylline did not inhibit the development of myocardial fibrosis in the presence of JNK activator anisomycin. Thus, conophylline inhibited angiotensin II-provoked myocardial fibrosis via the BMP4/JNK pathway.


Assuntos
Angiotensina II/farmacologia , Antifibróticos/farmacologia , Proteína Morfogenética Óssea 4/genética , Fibroblastos/efeitos dos fármacos , MAP Quinase Quinase 4/genética , Alcaloides de Vinca/farmacologia , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/patologia , Fibrose Endomiocárdica/prevenção & controle , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Modelos Biológicos , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Wistar , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Chem Neuroanat ; 113: 101941, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711423

RESUMO

Smad proteins are known to transduce the actions of the transforming growth factor-ß (TGF-ß) family including TGF-ßs, activins, and bone morphogenetic proteins (BMPs). We previously reported that Smad1/5/9 immunoreactivity was observed in astrocytes of various rat brain regions including the hippocampus, suggesting that Smad1/5/9 may be associated with the physiology of astrocytes. However, the Smad1/5/9 expression and activation in the hippocampal astrocytes after global cerebral ischemia has not been yet elucidated. In this study, we examined temporal changes in the expression and phosphorylation of Smad1/5/9 in the hippocampus using a rat model of global cerebral ischemia. Furthermore, we examined the candidate ligand involved in the phosphorylation of Smad1/5/9 in the hippocampus after ischemia. Pyramidal neuronal cell death in the CA1 regions was visible at 3 days, and maximum death occurred within 7 days after ischemia. At 7 days after ischemia, astrocytes that showed strong immunoreactivity for Smad1/5/9 were frequently observed in the CA1 region. Additionally, there was an increase in phosphorylated Smad1/5/9 (phospho-Smad1/5/9) -immunopositive astrocytes in the CA1 region 7 days after ischemia. Real-time PCR analysis showed an increase in the expression level of TGF-ß1 mRNA in the hippocampus after ischemia. Intracerebroventricular injection of SB525334, an inhibitor of TGF-ß/Smad signaling, reduced immunoreactivity for phospho-Smad1/5/9 in astrocytes. These results suggest that TGF-ß1 may be a key molecule for ischemia-induced Smad1/5/9 phosphorylation in astrocytes, and TGF-ß1-Smad1/5/9 signaling may play a role in post-ischemic events, including brain inflammation or tissue repair rather than neuroprotection of the hippocampus.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Masculino , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
9.
Biochem Cell Biol ; 99(5): 578-586, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646885

RESUMO

Duloxetine, a selective serotonin-norepinephrine reuptake inhibitor, is currently recommended for the treatment of chronic painful disorders such as fibromyalgia, chronic musculoskeletal pain, and diabetic peripheral neuropathy. We previously demonstrated that bone morphogenetic protein-4 (BMP-4) stimulates osteoprotegerin (OPG) production in osteoblast-like MC3T3-E1 cells, and that p70 S6 kinase positively regulates OPG synthesis. The present study aimed to investigate the effect of duloxetine on BMP-4-stimulated OPG synthesis in these cells. Duloxetine dose-dependently suppressed OPG release stimulated by BMP-4. Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), reduced BMP-4-stimulated OPG release, whereas a selective and specific norepinephrine reuptake inhibitor, reboxetine, failed to affect OPG release. In addition, another SSRI sertraline also inhibited BMP-4-stimulated OPG release. On the other hand, siRNA of SMAD1 reduced the OPG release stimulated by BMP-4, indicating the involvement of the SMAD1/5/8 pathway in OPG release. Rapamycin inhibited BMP-4-stimulated p70 S6 kinase phosphorylation, and compound C suppressed the SMAD1/5/8 phosphorylation stimulated by BMP-4. Duloxetine did not affect BMP-4-induced phosphorylation of p70 S6 kinase but suppressed SMAD1/5/8 phosphorylation. Both fluvoxamine and sertraline also inhibited BMP-4-elicited phosphorylation of SMAD1/5/8. These results strongly suggest that duloxetine suppresses BMP-4-stimulated OPG release via inhibition of the Smad1/5/8 signaling pathway in osteoblasts.


Assuntos
Proteína Morfogenética Óssea 4/antagonistas & inibidores , Cloridrato de Duloxetina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoprotegerina/antagonistas & inibidores , Células 3T3 , Animais , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/antagonistas & inibidores , Proteína Smad1/metabolismo , Proteína Smad5/antagonistas & inibidores , Proteína Smad5/metabolismo , Proteína Smad8/antagonistas & inibidores , Proteína Smad8/metabolismo
10.
Mol Cell Biochem ; 476(5): 2085-2097, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33517521

RESUMO

BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Desenvolvimento Muscular , Mioblastos/metabolismo , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Camundongos , Proteína Smad1/genética , Proteína Smad5/genética , Proteína Smad8/genética
11.
Osteoarthritis Cartilage ; 28(11): 1459-1470, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818603

RESUMO

OBJECTIVE: Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext-/- mouse model. METHOD: We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice. RESULTS: Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007). CONCLUSIONS: HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Heparitina Sulfato/deficiência , Osteoartrite do Joelho/metabolismo , Proteína ADAMTS5/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Cartilagem Articular/citologia , Condrócitos/patologia , Modelos Animais de Doenças , Hipertrofia , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
12.
Eur Rev Med Pharmacol Sci ; 24(10): 5691-5696, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32495904

RESUMO

OBJECTIVE: To elucidate the role of Prunella vulgaris L (PVL) in protecting glucocorticoids (GC)-induced osteogenesis inhibition, thereafter, protecting the deterioration of osteoporosis (OP). MATERIALS AND METHODS: Cell Counting Kit-8 (CCK-8) assay was conducted to assess the influence of PVL treatment on MSCs viability. Osteogenesis in MSCs was induced by Dexamethasone (DEX) stimulation. Regulatory effects of PVL on osteogenesis-related gene expressions, ALP activity, and mineralization ability in DEX-induced MSCs were determined. At last, protein levels of p-Smad1/5/9 and total-Smad1/5/9 influenced by DEX and PVL were measured by Western blot. RESULTS: PVL treatment did not pose a time- or dose-dependent influence on MSCs viability. DEX induction in MSCs downregulated ALP, RUNX2, Bglap, and Osterix. ALP activity and mineralization in DEX-induced MSCs were suppressed. Downregulated osteogenesis-related genes decreased ALP activity and mineralization in MSCs undergoing DEX stimulation were partially reversed by PVL treatment. Moreover, the downregulated p-Smad1/5/9 level in DEX-induced MSCs was elevated by PVL treatment, while total-Smad1/5/9 was not affected. CONCLUSIONS: PVL alleviated GC-induced suppression in MSCs osteogenesis by activating the Smad pathway, thereafter, protecting the deterioration of OP.


Assuntos
Dexametasona/antagonistas & inibidores , Glucocorticoides/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Prunella/química , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Substâncias Protetoras/química , Proteína Smad1/antagonistas & inibidores , Proteína Smad5/antagonistas & inibidores , Proteína Smad8/antagonistas & inibidores
13.
Eur Rev Med Pharmacol Sci ; 24(8): 4095-4102, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374006

RESUMO

OBJECTIVE: To illustrate the role of micro ribonucleic acid (miR)-330-5p in regulating osteogenesis through biglycan (Bgn)-mediated bone morphogenetic protein (BMP)/Smad pathway. MATERIALS AND METHODS: A mouse model of osteoporosis (OP) was established by ovariectomy (OVX). BMD and miR-330-5p levels in mice undergoing sham operation or OVX were determined. BMD and BV/TV in OP mice with in vivo knockdown of miR-330-5p were measured by Micro-CT. After silencing of miR-330-5p in mouse primary bone marrow stromal cells (BMSCs), expression changes in osteogenesis-associated genes, ALP activity, and mineralization ability were assessed. Subsequently, the interaction between miR-330-5p and Bgn was examined by Dual-Luciferase reporter gene assay and Western blotting. Then, Bgn levels in BMSCs undergoing osteogenesis at different time points were measured. At last, the regulatory effects of miR-330-5p/Bgn axis on the BMP/Smad pathway, ALP activity, and mineralization ability in BMSCs were evaluated. RESULTS: BMD was decreased and miR-330-5p was upregulated in OP mice. OP mice with in vivo knockdown of miNA-330-5p presented higher BMD and BV/TV than controls. Transfection with miR-330-5p inhibitor upregulated osteogenesis-associated genes, ALP activity, and mineralization ability in BMSCs. Bgn was time-dependently upregulated in BMSCs undergoing osteogenesis, which was indicated to be the target gene of miR-330-5p. Besides, Bgn level was negatively regulated by miR-330-5p. Importantly, Bgn was able to reverse the regulatory effects of miR-330-5p on the BMP/Smad pathway, ALP activity, and mineralization ability in BMSCs. CONCLUSIONS: Knockdown of miR-330-5p facilitates osteogenesis in BMSCs through the Bgn-induced BMP/Smad pathway, thus alleviating the progression of OP.


Assuntos
Biglicano/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Medula Óssea , Células Cultivadas , Modelos Animais de Doenças , Feminino , Camundongos , MicroRNAs/genética , Osteoporose/genética , Osteoporose/metabolismo
14.
Elife ; 92020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105214

RESUMO

The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.


Assuntos
Miocárdio/citologia , Crista Neural/citologia , Fosfoproteínas Fosfatases/fisiologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Camundongos , Miocárdio/metabolismo , Fosfoproteínas Fosfatases/genética , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad5/genética , Proteína Smad8/genética , Tetralogia de Fallot/prevenção & controle
15.
J Cell Physiol ; 235(3): 2698-2709, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512758

RESUMO

Hertwig's epithelial root sheath (HERS) is critical for epithelial-mesenchymal interaction (EMI) during tooth root formation. However, the exact roles of HERS in odontogenic differentiation by EMI have not been well characterized, because primary HERS cells are difficult to obtain. Immortalized cell lines constitute crucial scientific tools, while there are few HERS cell lines available. Our previous study has successfully established immortalized HERS cell lines. Here, we confirmed the phenotype of our HERS-H1 by verifying its characteristics and functions in odontogenic differentiation through EMI. The HERS-H1-conditioned medium (CM-H1) effectively enhanced odontogenic differentiation of dental papilla cells (DPCs) in vitro. Furthermore, Smad4 and p-Smad1/5/8 were significantly activated in DPCs treated with CM-H1, and this activation was attenuated by noggin. In vivo, our implanted recombinants of HERS-H1 and DPCs exhibited mineralized tissue formation and expression of Smad4, p-Smad1/5/8, and odontogenic differentiation markers. Our results indicated that HERS-H1 promoted DPCs odontoblastic differentiation via bone morphogenetic protein/Smad signaling. HERS-H1 exhibits relevant key molecular characteristics and constitutes a new biological model for basic research on HERS and the dental EMI during root development and regeneration.


Assuntos
Papila Dentária/citologia , Transição Epitelial-Mesenquimal/fisiologia , Dente Molar/citologia , Odontogênese/fisiologia , Raiz Dentária/citologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad4/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
16.
J Clin Invest ; 130(2): 942-957, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689244

RESUMO

Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1/ENG/Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated PI3K/Akt/mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR inhibitor, sirolimus, and the receptor tyrosine kinase inhibitor, nintedanib, could synergistically fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs - including in HHT patient blood outgrowth ECs - and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus nintedanib might provide therapeutic benefit in patients with HHT.


Assuntos
Células Endoteliais , Indóis/farmacologia , Sirolimo/farmacologia , Proteína Smad1 , Proteína Smad5 , Proteína Smad8 , Serina-Treonina Quinases TOR , Telangiectasia Hemorrágica Hereditária , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Clin Exp Pharmacol Physiol ; 47(5): 831-837, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883130

RESUMO

Alpha-pinene (α-pinene) is an organic compound, found in the oils of many species of coniferous trees, especially pine. α-Pinene reportedly has antioxidant and anti-inflammatory activities; however, its effects on osteoblasts are unknown. This study investigated the effects of α-pinene on osteoblast differentiation and tumour necrosis factor-alpha (TNFα)-induced inhibition of osteogenesis. Culture in control or osteogenic medium containing α-pinene increased osteogenic marker expression. Alkaline phosphatase staining and alizarin red S staining confirmed that α-pinene enhanced osteoblast differentiation. Also, α-pinene attenuated TNFα-induced inhibition of Smad1/5/9 phosphorylation and extracellular matrix mineralization. Taken together, our findings suggest that α-pinene enhances osteoblast differentiation and mineralization in MC3T3-E1 pre-osteoblasts.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosforilação , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
18.
Biomed Pharmacother ; 120: 109378, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541885

RESUMO

Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (µCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Reabsorção Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose Pós-Menopausa/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos Knockout , MicroRNAs/genética , Osteoblastos/patologia , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Ovariectomia , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
19.
Sci Rep ; 9(1): 13446, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530856

RESUMO

Bone morphogenetic proteins (BMPs) are multifunctional cytokines of the transforming growth factor ß (TGFß) superfamily with potential therapeutic applications due to their broad biological functionality. Designing BMP mimetics with specific activity will contribute to the translational potential of BMP-based therapies. Here, we report a BMP9 peptide mimetic, P3, designed from the type I receptor binding site, which showed millimolar binding affinities for the type I receptor activin receptor like kinase 1 (ALK1), ALK2 and ALK3. Although showing no baseline activity, P3 significantly enhanced BMP9-induced Smad1/5 phosphorylation as well as ID1, BMPR2, HEY1 and HEY2 gene expression in pulmonary artery endothelial cells (hPAECs), and this activity is dependent on its alpha helix propensity. However, in human dermal microvascular endothelial cells, P3 did not affect BMP9-induced Smad1/5 phosphorylation, but potently inhibited ALK3-dependent BMP4-induced Smad1/5 phosphorylation and gene expression. In C2C12 mouse myoblast cells, P3 had no effect on BMP9-induced osteogenic signalling, which is primarily mediated by ALK2. Interestingly, a previously published peptide from the knuckle region of BMP9 was found to inhibit BMP4-induced Smad1/5 phosphorylation. Together, our data identify a BMP9-derived peptide that can selectively enhance ALK1-mediated BMP9 signalling in hPAECs and modulate BMP9 and BMP4 signalling in a cell type-specific manner.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Animais , Sítios de Ligação , Linhagem Celular , Células Endoteliais , Fator 2 de Diferenciação de Crescimento/química , Fator 2 de Diferenciação de Crescimento/metabolismo , Humanos , Camundongos , Mimetismo Molecular , Peptídeos/metabolismo , Fosforilação , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad8/metabolismo , Relação Estrutura-Atividade
20.
Sci Rep ; 9(1): 9307, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243298

RESUMO

Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.


Assuntos
Isoflavonas/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fitoestrógenos/farmacologia , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Janus Quinase 1/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...